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Compatibility, Development, and Estimation of 
Taper and Volume Equation Systems
Dehai Zhao , Thomas B. Lynch, James Westfall, John Coulston, Michael Kane, and David E. Adams

The meaning of compatibility in systems of taper and volume equations has been extended. It is desirable and possible to develop completely compatible taper and volume 
equation systems that have algebraic compatibility and numeric consistency among all the component equations. Two such taper and volume systems were developed for slash 
pine in the southeastern United States. One was derived from a recently developed merchantable volume equation (Zhao and Kane 2017), and the other was derived from 
the well-known Max and Burkhart segmented polynomial taper equation (1976). Three fitting methods were used to obtain numerically consistent estimates of parameters 
in these two systems. The performance of the systems associated with fitting methods were evaluated with taper, merchantable volume and total volume predictions, and 
bias trends over different dbh classes, total height classes, and different relative height intervals. The new system outperformed the Max-Burkhart taper-based system for 
merchantable and total volume predictions and was competitive in diameter prediction. Optimization of parameters of the system for both taper and cumulative volume 
simultaneously is preferable to separate optimization for taper or volume only.
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The development of tree volume and taper equations has 
a long history. Volume tables and equations were pro-
duced more than 200  years ago (c.f., Clark 1902), and 

the form and taper of tree stems have been studied for more than 
100 years (c.f., Beher 1923). The theory of compatible taper and 
volume equation systems was first introduced in the early 1970s 
(Demaerschalk 1971, 1972). Since then, the meaning of compat-
ibility in taper and volume equation systems has been expanded, 
and several approaches for developing compatible systems of taper 
and volume equation have been proposed.

As initially defined by Demaerschalk (1971, 1972, 1973), compat-
ible taper equations, when integrated, produce an identical estimate 
of total volume to that given by existing volume equations. When 
Clutter (1980) developed taper functions from variable-top mer-
chantable volume equations, compatibility meant that integrating 
taper equations along the length of any section of the tree bole must 
produce the volume of that section obtained from the correspond-
ing variable-top merchantable volume equations. Now, the concept 

of compatibility in a system of taper and volume equations has been 
expanded so that all component equations (taper, total volume, and 
merchantable volume) in that system are algebraically compatible 
with each other. Generally speaking, algebraic compatibility means 
that parameters of one equation can be written in terms of parameters 
in another equation. For example, algebraically rearranging param-
eters of a taper equation gives parameters for a corresponding mer-
chantable volume equation and total volume equation. Conversely, 
parameters of a taper equation and a total volume equation can be 
obtained from the parameters of a merchantable volume equation. In 
such an algebraically compatible system, therefore, the taper equation 
and merchantable volume equation share the same set of parameters. 
Furthermore, estimation of parameters in an algebraically compatible 
system should ensure numeric consistency among the component 
equations. In other words, all component equations in that system 
also share the same parameter estimates. Thus, we can define a com-
pletely compatible taper and volume equation system as one that has 
both the algebraic compatibility and the same parameter estimates.
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Two common approaches are available to develop algebraically 
compatible taper and volume equations. One is to develop taper 
equations first, then integrate the taper equation to get merchant-
able volume and total volume equations. More complicated taper 
equations may be more accurate for predicting stem taper, such 
as the Kozak (2004) variable-exponent taper equation (Li and 
Weiskittel 2010), but deriving closed-form compatible merchant-
able and total volume equations from some complex taper equations 
is almost impossible. The second approach is to derive compatible 
taper equations from volume equations by solving a differential 
equation after differentiating that volume equation (e.g., Clutter 
1980, Bailey 1994) or by differentiating the volume equation only 
(e.g., Van Deusen et al. 1982, Lynch et al. 2017), depending on 
the volume model forms. No matter which form a merchantable 
volume model (Vm) has, it can always be expressed as total stem vol-
ume (VT) multiplied by the ratio of merchantable to total volume 
(R) (see Appendix A). Thus, deriving compatible taper equations 
from merchantable volume equations essentially becomes deriving 
compatible taper equations from the volume ratio functions (R).

Deriving compatible taper equations from upper diameter 
(d)-based volume ratio equations ( )Rd  requires the solution of a 
differential equation after differentiating that volume ratio Rd  with 
respect to upper height (h). Thus, deriving closed-form compatible 
taper equations is not difficult from Rd s with power functions of d 
(e.g., Clutter 1980, Bailey 1994, Fang and Bailey 1999, Fang et al. 
2000), but almost impossible from Rd s with exponential functions 
of d [except in Jordan et al. (2005) with a complicated Incomplete 
Gamma function]. However, taking the partial derivative of upper 
height-based volume ratios ( )Rh  with respect to h directly leads 
to compatible taper equations (Van Deusen et  al. 1982, Reed and 
Green 1984, Lynch et  al. 2017). Whether Rh  is a power function 
or an exponential function of h, it is possible to derive closed-form 
compatible taper equations. For given merchantable volume equations, 
there is a corresponding uniquely defined compatible taper function 
(Clutter 1980). The resultant taper and volume equation cannot 
guarantee algebraic compatibility if the general volume ratio function 
R (Rd or Rh) does not satisfy four conditions (see Appendix A).

To ensure numeric consistency among component equations 
in an algebraically compatible system, three methods can be used 
to obtain parameter estimates. The first method is to fit the taper 
equation to taper measurement data and then extract the param-
eters for the merchantable volume and the total volume equations 
from the fitted taper equation (Goulding and Murray 1976). The 
second method is to fit the merchantable volume equation to 
cumulative volume data first, then extract the parameters for the 
total volume and taper equations from the fitted merchantable vol-
ume equation (Lynch et al. 2017, Zhao and Kane 2017). The third 
method is to simultaneously fit the taper equation and merchant-
able volume equation to the taper measurement data and cumula-
tive volume data of the same sampled trees (Van Deusen 1988, 
Fang et al. 2000). To the best of our knowledge, there is no study 
exploring how these methods change the system performance in 
predicting taper, merchantable volume, and total volume. Some 
researchers separately fit a volume equation and a taper equation, 
then adjust the coefficients of the taper equation so that the sum-
mation of volumes of tree segments derived from the taper equation 
is equal to the tree volume as estimated from the volume equation 
(e.g., Munro and Demaerschalk 1974), or the resulting taper model 
produces predictions that match dbh and/or total volume predicted 

separately from the total volume equation (e.g., Özçelik and Cao 
2017). These conditioning methods would not necessarily improve 
the fit of the taper equation (Özçelik and Cao 2017).

This study compared two algebraically compatible systems of 
taper and volume equations: one was derived from a newly pub-
lished merchantable volume equation (Zhao and Kane 2017) and 
the other was derived from the well-known Max and Burkhart 
(1976) segmented polynomial taper equation with the quadratic-
quadratic-quadratic (Q-Q-Q) form. The systems, along with three 
different parameter estimation methods, were evaluated in terms 
of taper, merchantable volume, and total volume predictions. The 
objective was to develop a completely compatible system that can 
more accurately and precisely predict total volume, merchantable 
volume, and diameter at any specified height for slash pine (Pinus 
elliottii Engelm.), a leading timber species in the southeastern 
United States.

Data
Data used in this study are from two data sets of measure-

ments on slash pine trees sampled from plantation plots in the 
coastal plain of Georgia and north Florida. The first data were 
obtained from 134 trees felled in 2013–2016 and the second 
data were from 1,289 trees felled in 1993, 2012, and 2013. Four 
sample trees without any obvious abnormalities were felled on 
each sample plot. Two trees classified as dominant or codominant 
were selected from a large dbh class, a third tree was selected 
from the average dbh class, and a fourth tree was selected from 
a dbh class smaller than the average dbh class. Each sample tree 
was measured for dbh with a diameter tape and, after felling, for 
total height with a measuring tape. The sample trees in the first 
data set were cut leaving a 0.15-m stump, then diameter outside 
bark (cm) at 0.15, 0.61, 1.22, 2.44, 3.66, 4.88 m . . . up to a top 
diameter of <5.1 cm was measured. The felled trees in the second 
data set were cut into 1.52-m bolts starting at ground level up to 
a top diameter of <5.1 cm. Each bolt was measured for diameter 
outside bark at the small end. Total tree volume outside bark and 
cumulative volume from the butt to successive bolt heights were 
calculated using the overlapping bolts method of Bailey (1995). 
Distribution of all sampled trees by dbh and total height classes 
is shown in Table 1.

Methods
Systems of Taper and Volume Equations

The following notation will be used throughout the rest of this 
article. Other notations specific to a particular equation will be 
listed with the equation.

D: dbh (cm);
H: total tree height (m);
h: height above ground to diameter d (m);
d: upper stem diameter, outside bark (cm);

Management and Policy Implications

The developed completely compatible taper and volume equation systems 
with parameters optimized simultaneously for both taper and cumulative vol-
ume can provide accurate and consistent estimations of taper, merchantable 
volume, and total volume for slash pines in the southern United States.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/65/1/1/5103506 by U

 S D
ept of Agriculture user on 02 July 2019



2  Forest Science  •  February 2019 Forest Science  •  February 2019  3

p : stem relative height, p h H= / ;
VT : total tree outside-bark volume (m3);
Vm : volume from the ground to some top diameter or height 

limit (i.e., merchantable volume) (m3);
Vh : merchantable volume up to height h (m3);
R : volume ratio, V Vm T/ ; ratio which when multiplied by total 

tree volume gives merchantable volume;
Rp : volume ratio for Vm  prediction to a relative height (p);
Rh : volume ratio for Vm prediction to an upper height limit (h);
Rd : volume ratio for Vm  prediction to an upper diameter limit (d);
k : a constant, π / 40 000  for metric units or π / 576  for 

English measurement units.
The first system was derived from the following volume ratio 

function, which is the best model form selected from eight new 
upper height-based volume ratio models proposed by Zhao and 
Kane (2017):

	 R pp = − −  > < ≤1 1 1 0 1( ) ; , .α β
α β  	            (1)

This volume ratio function satisfies all four conditions (I–IV). In 
general, a compatible taper equation can be derived from the vol-
ume ratio Rp  or Rh  (Lynch et al. 2017):

		  d h V k R hT p( ) ( / )( / ).= ∂ ∂ 	           (2)

The parameter β  in Eq. 1 is strongly related to tree volume, and Eq. 
1 could be modified as

	 R pp

D Ha a
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− −{ }1 1 1
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Thus, the corresponding merchantable volume equation could be 
written as	
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Here, the tree total volume equation is

			   V a D HT
a a= 0

1 2 .  	       	            (5)

The compatible taper function derived from Eq. 4 is 
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Eq. 5 was originally presented by Schumacher and Hall (1933) 
in the logarithmic form. Eqs. 4–6 constitute the first system of taper 
and volume equations, which is algebraically compatible among 
component equations. That is, Eq. 4 and Eq. 6 share the same set 
of parameters a a a0 1 2, , , ,    , and α φ θ , and share a a a0 1 2, ,  and 
with Eq. 5.

The second system was derived from the well-known Max and 
Burkhart (1976) six-parameter Q-Q-Q taper equation. The Max-
Burkhart taper equation was rewritten in the following form:
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Integrating Eq. 7 results in the following merchantable volume 
equation:
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A total volume equation was derived by setting h H= :

	 V k
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Eq. 9 is a special case of the constant-form factor volume equation 
(Spurr 1952). Eqs. 7–9 comprise an algebraically compatible taper 
and volume equation system.

Fitting Methods
The systems of taper and volume equations derived above con-

sist of three interdependent components: the taper equation, the 
merchantable volume equation, and the total volume equation. 
Due to their algebraic compatibility, three fitting methods were 
used to obtain parameter estimates and to ensure numeric consis-
tency among the component equations.

Fitting Method 1 (FM-1)—Fitting to Taper Data
The taper equation was fit using weighted nonlinear least squares 

(WNLS). First, the taper equation in each system was fit to the 

Table 1. Distribution of all sampled trees by DBH and total height 
classes.

DBH class 
(cm)

Total height class (m) Total

6 8 10 12 14 16 18 20 22 24 26

6 2 3 5
8 3 46 49 9 107
10 23 42 44 9 118
12 13 34 55 41 13 2 158
14 3 19 44 60 34 18 1 179
16 12 35 41 38 29 7 162
18 2 17 53 52 61 23 11 1 220
20 1 20 69 44 34 10 178
22 8 21 31 32 12 8 1 113
24 1 1 6 11 20 9 7 55
26 2 16 40 14 4 76
28 2 2 20 12 4 40
30 5 2 1 1 9
32 1 1
34 1 1 2
Total 5 88 158 206 233 237 214 183 72 25 2 1423
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taper measurement data using nonlinear least squares. Second, the 
estimated errors from the first step were modeled as a power func-
tion of D, H, and h, yielding a weight function for heteroscedasticity 
(Parresol 2001, Zhao et al. 2015). Third, after fixing the weight func-
tion and refitting the taper equation using the WNLS, an autore-
gressive function AR(2) was determined to be best to describe the 
correlation between successive measurements on the same tree. Last, 
the taper equation was refit using the WNLS with the fixed weight 
function and an AR(2) correlation structure. After finally refitting the 
taper equation to taper measurement data, parameter estimates for 
the merchantable volume equation and the total volume equation in 
the system were extracted from the fitted taper equation, respectively.

FM-2—Fitting to Cumulative Volume Data
The merchantable volume equation was first fitted to cumulative 

volume data using the nonlinear least squares. In the same manner 
used for fitting the taper equations above, a weight function was 
developed to address heteroscedasticity, and a better autoregres-
sive function [i.e., AR(2)] was found to account for the correla-
tion between successive measurements on the same tree. Finally, 
the merchantable volume equation was refit with WNLS using the 
fixed weight function and the AR(2) correlations. After finally refit-
ting the merchantable volume equation to cumulative volume data, 
parameter estimates for the corresponding taper equation and the 
total volume equation were calculated or extracted from the fitted 
merchantable volume equation.

FM-3—Simultaneously Fitting to Taper and Cumulative Volume Data
First, the merchantable volume equation and taper equation in 

each system were simultaneously fitted to taper measurement data 
and cumulative volume data of the same sample trees using non-
linear seemingly unrelated regression (NSUR), which accounts for 
the inherent correlation between the taper and volume equations. 
Then, based on the estimated errors of the unweighted NSUR, a 
unique weight function as a power function of D, H, and h was 
formed for each equation, and an autoregressive function AR(2) 
was found appropriate for both taper and merchantable volume 
equations. Finally, after fixing the weight functions, the merchant-
able volume and taper equation system were simultaneously refit 
using weighted NSUR with the AR(2) structure to estimate all 
parameters.

When h H= in the original data, observed d h( ) = 0  and 
observed merchantable volume are equal to observed total tree vol-
ume. It is theoretically correct that when h is equal to H in the two 
systems, the merchantable volume equations (Eqs. 4 and 8)  will 
convert to the corresponding total volume equations (Eqs. 5 and 9), 
respectively. In the first system, the merchantable volume equation 
(Eq. 4)  contains 1− h H/ . The nonlinear parameter estimation 
algorithm makes use of logarithms of 1− h H/ , and the logarithm 
will be undefined when h H= . Thus, the observations of total 
volume will be ignored and cannot be used directly in FM-2 and 
FM-3. It is not reasonable to estimate parameters to predict total 
volume without having the total volume observations involved in 
the parameter estimation processes (Fang et al. 2000). To solve this 
problem in the parameter estimation processes, the merchantable 
volume equation in the first system was rewritten as:

		  V V Vh h T= − +( ) ,1 γ γ 		  (10)

where γ γ= = =1 0, ; if  otherwise h H . The merchantable vol-
ume equation Vh  and the total volume equation VT  are defined 
by Eqs. 4 and 5 in the first system, respectively. Similarly, the taper 
equations were rewritten as:

		  d h d h( ) ( ) ( ),= −1 γ 		        (11)

where the taper equations are defined by Eqs. 6 or 7.
All the model fits were performed using the MODEL Procedure 

in the SAS/ETS 9.3 (SAS Institute, Inc. 2011).

Model Assessment and Evaluation
The common statistics of average error (E), relative error (RE), stan-

dard error of estimate (SEE), relative standard error of estimate (RSEE), 
and the coefficient of determination (R2) were calculated for upper stem 
diameter, cumulative volume, and total tree volume to evaluate the 
taper and volume equation systems with the three fitting methods.

To more closely examine the effectiveness of the systems associ-
ated with the fitting methods, the average errors of estimated stem 
diameter, cumulative volume, and total tree volume were deter-
mined by dbh class, total stem height class, and relative height 
interval from the ground and were compared graphically.

Results and Discussion
As shown in the Appendix A, a uniquely defined compatible 

taper equation could be derived from a given volume ratio func-
tion, regardless of Rd, or Rh. The methodologies used to derive 
such a compatible taper equation from Rd (e.g., Clutter 1980, 
Bailey 1994) or from Rh (e.g., Van Deusen et al. 1982, Reed and 
Green, 1984, Lynch et al. 2017) can be unified by taking the par-
tial derivative of merchantable volume equations with respect to 
h. To achieve the algebraic compatibility in a system of taper and 
volume equations, the volume ratio function in that system (or 
implied in that system) should satisfy all four conditions (see the 
Appendix A). However, most previously published volume ratio 
functions do not satisfy all four conditions. For example, volume 
ratio models used by Burkhart (1977), Cao and Burkhart (1980), 
Pienaar et al. (1985, 1987), Gregoire and Schabenberger (1996), 
and Bullock and Burkhart (2003) do not satisfy the first condi-
tion. Zhao and Kane (2017) proposed several upper height-based 
volume ratio functions that satisfy all four conditions, and their 
corresponding compatible taper equations are given in Lynch 
et al. (2017).

Parameters for the two algebraically compatible systems were esti-
mated by FM-1, FM-2, and FM-3, respectively, to ensure numeric 
consistency among component equations. There are some differences 
in parameter estimates and some big differences in parameter standard 
errors due to the fitting methods (Tables 2 and 3). Parameters in the 
system were optimized only for taper in FM-1 and were optimized for 
cumulative volume and total volume in FM-2. In FM-3 all parameters 
in the system were optimized for taper, cumulative volume, and total 
volume. When fitting the merchantable equation in the first system 
using FM-2 and FM-3, the technique described above (Eq. 10) was 
used to avoid undefined logarithms so that the total volume observa-
tions were used in the parameter estimation processes.

The residual variances were stabilized with the weight functions 
(Tables 2 and 3). The correlations between successive measurements on 
the same tree were described as an AR(2) structure. The measurements 
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of the two data sets in this study were not conducted with the same 
spacing between measurements. Some correlation structures with con-
tinuous functions of distance between measurements might perform 
better. But the preliminary analysis suggested that their improvement 
was minimal compared with AR(2) for this specific study.

Overall, both systems performed well with R 2 0 978> .  for 
all taper, merchantable volume, and total volume predictions 
(Table 4). Given a fitting method, the first system provided bet-
ter prediction for merchantable and total volumes, and the second 
system provided a little better prediction for taper, in terms of E, 

RE, SEE, RSEE, and R2. Both FM-2 and FM-3 improved cumu-
lative and total volume predictions and slightly improved taper 
prediction compared to FM-1 for the first system. For the second 
system, both FM-2 and FM-3 improved cumulative and total vol-
ume predictions but did not change the performance of the taper 
equation. Given a system, the estimation methods could be ranked 
based on either the errors or standard errors of estimates of taper, 
merchantable volume, and total volume (Kozak and Smith 1993). 
For the first system, either by overall average errors or by overall 
standard errors of estimates, FM-3 ranked first and FM-1 ranked 

Table 2. Parameter estimates and their standard errors (italic values) and the associated weight function for the first system of slash pine 
taper and volume equations from three approaches. 

Fitting method Weight function a∧0 a∧1 a∧2 a∧ θ
∧

φ
∧

FM-1
(Eq. 6) D H h2 1079 0 3863 0 1698. . .− − 5.7763E-5 1.9608 0.8955 2.0850 0.4170 4.2003E-6b

1.5567E-6 0.0112 0.0130 0.0059 0.0050 1.5940E-6
FM-2
(Eq. 4) D H h3 0014 0 2872 1 2658. . . 4.7636E-5 1.8633 1.0749 2.0601 0.2617 -8.0094E-6a

6.1402E-7 0.0044 0.0055 0.0113 0.0187 2.6803E-6
FM-3
(Eqs. 4 & 6) D H h2 1003 0 4144 0 1966. . .− − 4.9917E-5 1.8728 1.0496 2.0706 0.4057 8.0034E-6

D h3 1862 1 3369. . 5.2597E-7 0.0038 0.0048 0.0045 0.0044 1.1208E-6

In fitting method FM-1, the taper equation (Eq. 6) is fitted to taper data, then the estimated parameters are substituted into the merchantable volume equation (Eq. 4) and 
the total volume equation (Eq. 5). In fitting method FM-2, Eq. 4 is fitted to cumulative volume data, the estimated parameters are substituted into Eq. 6 and Eq. 5. In 
fitting method FM-3, the six parameters are estimated by simultaneously fitting Eqs. 4 and 6 to cumulative volume and taper data. 
a p = 0.0019; b p = 0.0084; others p < 0.0001.

Table 3. Parameter estimates and their standard errors (italic values) and the associated weight function for the second system of slash 
pine taper and volume equations from three approaches. 

Fitting method Weight function b
∧

1 b
∧

2 b
∧

3 b
∧

4
a∧1 a∧2

FM-1
(Eq. 7) D H h1 6109 0 5883 0 0765. . .− − -4.2532 1.9819 -2.0342 1.1471E2 0.7857 7.8018E-2

0.0878 0.0481 0.0476 3.7231 0.0043 1.1223E-3
FM-2
(Eq. 8) D H h3 2165 0 8457 1 2288. . .− -5.7504 2.8048 -2.9796 1.4466E2 0.8113 7.1691E-2

0.9616 0.5232 0.5098 28.2517 0.0221 4.5179E-3
FM-3
(Eqs. 7 & 8) D H h1 5476 0 4919 0 0626. . .− -4.3273 2.0237 -2.0908 1.2308E2 0.7867 7.5676

D H h3 0795 0 8554 1 2504. . .− 0.0869 0.0475 0.0467 3.7813 0.0041 1.0085E-3

In fitting method FM-1, the taper equation (Eq. 7) is fitted to taper data, then the estimated parameters are substituted into the merchantable volume equation (Eq. 8) and 
the total volume equation (Eq. 9). In fitting method FM-2, Eq. 8 is fitted to cumulative volume data, the estimated parameters are substituted into Eq. 7 and Eq. 9. In 
fitting method FM-3, the six parameters are estimated by simultaneously fitting Eqs. 7 and 8 to taper measurement data and cumulative volume data.
All p < 0.0001.

Table 4. Overall performance comparison of taper and volume equation systems associated with the parameter estimation methods, 
based on taper, merchantable volume and total volume predictions.

System Fitting method Taper Merchantable volume Total volume

E
(cm)

RE
(%)

SEE
(cm)

RSEE
(%)

R2 E
(m3)

RE
(%)

SEE
(m3)

RSEE
(%)

R2 E
(m3)

RE
(%)

SEE
(m3)

RSEE
(%)

R2

1 FM-1 0.142 1.23 0.990 8.62 0.980 0.005 3.05 0.019 11.03 0.984 0.007 3.37 0.023 11.01 0.980
FM-2 -0.102 -0.89 0.986 8.58 0.980 0.003 1.96 0.017 9.71 0.988 0.002 1.07 0.020 9.72 0.985
FM-3 -0.046 -0.40 0.958 8.34 0.981 0.001 0.55 0.017 9.64 0.988 0.002 0.80 0.020 9.70 0.985

2 FM-1 0.059 0.51 0.835 7.27 0.985 -0.009 -4.97 0.022 12.62 0.979 -0.006 -2.83 0.024 11.68 0.978
FM-2 0.072 0.62 0.848 7.38 0.985 0.004 2.58 0.017 10.09 0.987 0.005 2.23 0.022 10.34 0.983
FM-3 0.074 0.65 0.835 7.27 0.985 0.004 2.21 0.017 10.03 0.987 0.005 2.17 0.022 10.32 0.983

Note: E yi yi n= −∑ ( )/∧
, RE E y= ×/ 100, SEE yi yi n p= −∑ −( ) / ( )∧ 2 , RSEE SEE y= ×/ 100 , R yi yi yi y2 2 21= − − −∑∑ ( ) / ( )∧

. Since the six 

parameters in each of the two systems are shared by the taper, merchantable volume, and total volume equations, p is 3 in this case.
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third (Table B.1 in Appendix B). For the second system, FM-3 also 
ranked first and FM-1 ranked third by overall standard errors of 
estimates; the fitting methods were equally ranked by overall errors.

The local performances of a given system were changed by the 
parameter estimation methods (Figures 1 and 2). For the first sys-
tem, it was a little surprising that even when the taper equation 

Figure 1. Comparisons of the average errors of estimated outside-bark diameter and merchantable volume by dbh class, total height 
class, relative height from ground using the first system fitted by FM-1 (fitting to taper data), FM-2 (fitting to cumulative volume data), and 
FM-3 (simultaneously fitting to taper and cumulative volume data).

Figure 2. Comparisons of the average errors of estimated outside-bark diameter and merchantable volume by dbh class, total height 
class, relative height from ground using the second system fitted by FM-1 (fitting to taper data), FM-2 (fitting to cumulative volume data), 
and FM-3 (simultaneously fitting to taper and cumulative volume data).
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was fitted to taper data, the fitted taper equation generally did not 
provide the best prediction for taper (Figure 1a, c, e), although it 
might have small diameter errors for small trees (dbh <13 cm or 
total height <17 m), trees in some large DBH classes >23 cm, or 
near the bottom and at top sections (<20% and >80% of total 
height). Furthermore, the first system with FM-1 provided the 
worst prediction for merchantable volume, having larger errors for 
large trees or on the upper half of the stem (Figure 1b, d, f ), and 
total volume (Table 4). This suggests that it might not be a good 
practice to estimate cumulative volume or total volume based only 
on the developed taper equation with FM-1. For the first system, it 
is clear that FM-3 performed better than FM-1 and FM-2 in terms 
of merchantable volume, total volume, and taper predictions.

For the second system, FM-1, FM-2, and FM-3 produced very 
similar results for taper prediction over dbh classes and total tree 
height classes (Figure 2a, c). FM-1 and FM-3 also had very similar 
diameter error patterns at stem portion from ground to top, but 
FM-2 had relatively higher diameter errors near the butt (<1.37 m) 
and at top sections of tree (>80% total height) (Figure 2e). FM-1 
produced the worst results for merchantable volume prediction 
(Figure 2b, d, f ) and total volume prediction (Table 4) among the 
three estimation methods. There were no large differences between 
FM-2 and FM-3 in merchantable and total volume predictions.

Compared with FM-1, FM-2 and FM-3 substantially improved 
the estimation of merchantable volumes for both systems, because 
the magnitudes in average errors at various portions were smaller 
than for FM-1. With FM-2 or FM-3, the second system system-
atically underestimated merchantable volume from the ground to 
the top. For the second system, the change from systematic over-
estimation of merchantable volume with FM-1 to underestima-
tion of merchantable volume with FM-2 or FM-3 is partly because 
the total volume equation in that system is a constant form factor 

function (Eq. 9). This total volume equation with parameters cal-
culated from the fitted taper equation (Eq. 7) overestimated total 
volume and had a smaller value of R2 (0.978) and larger values of 
SEE (0.024) and RSEE (11.68%) (Table 4). The Schumacher and 
Hall (1933) volume equation in the first system (Eq. 5) provided 
better estimates of the total volume ( R 2 0 980= . , SEE = 0.023 and 
RSEE  = 11.01%) even with parameters extracted from the fitted 
taper equation (Eq. 6).

The taper and merchantable volume equations in an algebra-
ically compatible system share the same parameters, so the simul-
taneous estimation approach is recommended (Fang et  al. 2000) 
if taper, merchantable (i.e., cumulative) volume, and total volume 
observation are available. Our results further supported this recom-
mendation. In the theory of seemingly unrelated regressions, the 
seemingly unrelated regression estimation is generally more precise 
for estimating the parameters than separate estimation of equations 
in the system if the equations have correlated errors. Our results 
showed that FM-3 had a lower standard error or an equivalent stan-
dard error, though there were a few exceptions. Of course, some-
times the difference was not very much (Tables 2 and 3).

Using FM-3, the two favored systems fit reasonably well. More 
than 98.1% of the variation about the mean values of d, Vm, and 
VT is explained by the model systems (Table  4). Overall average 
error and SEE of total volume are 0.002 m3 (0.80%) and 0.020 m3 
(9.70%) for the first system, and 0.005 m3 (2.17%) and 0.022 m3 
(10.32%) for the second system (Table 4; or relative height 100% 
in Table  7). The two systems associated with FM-3 were ranked 
on the errors and standard errors of estimates for outside bark 
diameter, merchantable and total volumes for different dbh classes 
(Table 5), for different total height classes (Table 6), and at different 
relative height levels from ground (Table 7). Our new system (i.e., 
the first one) ranked first (Table B.2 in Appendix B).

Table 5. Performance comparison of model systems associated with FM-3 and by dbh classes for outside bark diameter and merchantable 
volume for slash pine. 

System Dbh class (cm) n Upper diameter Merchantable volume

E
(cm)

RE 
(%)

SEE 
(cm)

RSEE 
(%)

E
(m3)

RE 
(%)

SEE 
(m3)

RSEE 
(%)

1 <9.0 716 -0.037 -0.68 0.503 9.17 0.0003 1.54 0.0019 11.56
1 9.1–11.0 890 -0.076 -1.14 0.595 8.94 -0.0000 -0.05 0.0038 11.72
1 11.1–13.0 1345 -0.083 -1.07 0.700 9.03 -0.0006 -1.14 0.0062 11.67
1 13.1–15.0 1757 -0.047 -0.53 0.749 8.49 0.0003 0.39 0.0091 11.11
1 15.1–17.0 1667 0.000 0.00 0.827 8.31 0.0012 1.09 0.0112 10.06
1 17.1–19.0 2624 0.012 0.10 0.866 7.61 0.0016 1.05 0.0134 8.68
1 19.1–21.0 2284 -0.015 -0.12 0.990 7.82 0.0026 1.32 0.0179 9.18
1 21.1–23.0 1578 -0.024 -0.17 1.114 7.86 0.0018 0.72 0.0211 8.36
1 23.1–25.0 830 -0.173 -1.12 1.124 7.31 -0.0032 -1.05 0.0242 7.96
1 25.1–27.0 1092 -0.120 -0.72 1.402 8.40 0.0014 0.39 0.0283 7.81
1 27.1–29.0 604 -0.049 -0.27 1.430 7.93 0.0040 0.93 0.0276 6.47
1 >29.1 180 -0.449 -2.32 1.611 8.33 -0.0088 -1.73 0.0311 6.07
2 <9.0 716 0.170 3.10 0.564 10.28 0.0020 11.72 0.0028 16.45
2 9.1–11.0 890 0.125 1.88 0.604 9.07 0.0027 8.20 0.0046 14.19
2 11.1–13.0 1345 0.109 1.41 0.676 8.73 0.0030 5.60 0.0065 12.38
2 13.1–15.0 1757 0.147 1.67 0.726 8.23 0.0048 5.87 0.0103 12.58
2 15.1–17.0 1667 0.164 1.65 0.782 7.86 0.0060 5.36 0.0126 11.30
2 17.1–19.0 2624 0.171 1.50 0.768 6.75 0.0068 4.38 0.0148 9.58
2 19.1–21.0 2284 0.106 0.84 0.876 6.93 0.0068 3.50 0.0191 9.78
2 21.1–23.0 1578 0.059 0.42 0.921 6.50 0.0052 2.08 0.0211 8.39
2 23.1–25.0 830 -0.141 -0.92 0.922 5.99 -0.0021 -0.70 0.0236 7.79
2 25.1–27.0 1092 -0.178 -1.07 1.113 6.67 -0.0010 -0.27 0.0278 7.66
2 27.1–29.0 604 -0.171 -0.95 1.100 6.10 -0.0026 -0.60 0.0268 6.28
2 >29.1 180 -0.694 -3.59 1.373 7.10 -0.0222 -4.34 0.0408 7.98

Percent E (RE) and percent SEE (RSEE) are based on the average observed values of the dbh class.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/65/1/1/5103506 by U

 S D
ept of Agriculture user on 02 July 2019



8  Forest Science  •  February 2019 Forest Science  •  February 2019  9

Fang et al. (2000) developed an eight-parameter system of com-
patible inside bark taper and volume equations for slash pine based 
on segmented-stem form factor equations. Our systems had six 
parameters fitted to outside bark taper and volume for slash pine. 
Even though we did not fit Fang’s system to our data, we could still 
compare approaches using the relative values of some fitting statis-
tics. The relative error and SEE of total inside bark volume in the 
system of Fang et al. (2000) are 0.38% and 12.46%, respectively. 
Across dbh and total height classes and from ground to top, the first 

system generally had smaller values of the relative error and SEE of 
merchantable volume than either Fang’s system or our second sys-
tem. The relative error and SEE of upper diameter across dbh and 
total height classes and from ground to top indicated that the first 
system can be competitive with the second system and Fang’s system 
for modeling slash pine taper, although the first system had larger 
errors at heights >80% of total height. Lynch et al. (2017) also found 
that Eq. 6 in the first system and Eq. 7 in the second system were 
competitive in performance when fitted to loblolly pine taper data. 

Table 7. Performance comparison of model systems associated with FM-3 and at several heights from ground level for outside bark 
diameter and merchantable volume for the slash pine data. 

System Height from ground n Upper diameter Merchantable volume

E
(cm)

RE
(%)

SEE 
(cm)

RSEE 
(%)

E
(m3)

RE
(%)

SEE
(m3)

RE 
(%)

1 <0.50 m 1004 0.020 0.10 1.236 5.97 -0.0001 -1.43 0.0009 12.94
1 0.51–1.37 m 263 -0.802 -3.66 1.020 4.66 -0.0002 -0.30 0.0038 7.44
1 1.38 m-10% 595 -1.243 -6.36 1.378 7.05 0.0002 0.36 0.0075 11.41
1 10%-20% 1500 -0.428 -2.69 0.825 5.18 -0.0021 -2.86 0.0076 10.09
1 20%-30% 1440 0.066 0.42 0.822 5.23 -0.0035 -2.82 0.0106 8.56
1 30%-40% 1528 0.329 2.29 0.935 6.48 -0.0021 -1.31 0.0125 7.95
1 40%-50% 1454 0.458 3.51 1.008 7.73 -0.0002 -0.12 0.0143 7.80
1 50%-60% 1428 0.436 3.72 1.030 8.79 0.0019 0.93 0.0174 8.32
1 60%-70% 1495 0.293 2.91 0.962 9.57 0.0035 1.54 0.0201 8.84
1 70%-80% 1438 -0.126 -1.56 0.920 11.44 0.0039 1.62 0.0221 9.07
1 80%-90% 1338 -0.673 -11.84 1.155 20.33 0.0034 1.30 0.0231 8.83
1 90%-100% 661 -0.580 -17.47 1.023 30.80 0.0087 3.01 0.0261 9.01
1 100% 1423 0.000 0.00 0.000 0.00 0.0017 0.80 0.0203 9.70
2 <0.50 m 1004 0.149 0.72 1.294 6.25 0.0005 7.56 0.0011 14.80
2 0.51–1.37 m 263 0.260 1.19 0.730 3.33 0.0023 4.43 0.0043 8.40
2 1.38 m-10% 595 -0.029 -0.15 0.559 2.86 0.0046 6.96 0.0089 13.47
2 10%-20% 1500 0.043 0.27 0.700 4.39 0.0035 4.68 0.0076 10.06
2 20%-30% 1440 -0.032 -0.20 0.811 5.16 0.0030 2.42 0.0104 8.38
2 30%-40% 1528 -0.018 -0.13 0.849 5.89 0.0030 1.88 0.0130 8.26
2 40%-50% 1454 0.038 0.29 0.852 6.54 0.0030 1.62 0.0151 8.25
2 50%-60% 1428 0.063 0.54 0.904 7.71 0.0035 1.66 0.0181 8.65
2 60%-70% 1495 0.120 1.19 0.913 9.08 0.0039 1.70 0.0206 9.08
2 70%-80% 1438 0.113 1.40 0.916 11.39 0.0041 1.70 0.0225 9.22
2 80%-90% 1338 0.173 3.04 0.880 15.50 0.0046 1.76 0.0243 9.27
2 90%-100% 661 0.376 11.33 0.753 22.68 0.0118 4.06 0.0278 9.60
2 100% 1423 0.000 0.00 0.000 0.00 0.0046 2.17 0.0216 10.32

Percent E (RE) and percent SEE (RSEE) are based on the average observed values of the relative height class.

Table 6. Performance comparison of model systems associated with FM-3 and by height classes for outside bark diameter and merchant-
able volume for the slash pine data. 

System Total height class (m) n Upper diameter Merchantable volume

E
(cm)

RE 
(%)

SEE 
(cm)

RSEE 
(%)

E
(m3)

RE
(%)

SEE
(m3)

RSEE
(%)

1 <9.0 544 0.145 2.29 0.595 9.40 0.0018 8.63 0.0031 14.55
1 9.1–11.0 1145 0.044 0.60 0.689 9.39 0.0018 4.80 0.0047 12.67
1 11.1–13.0 1744 -0.052 -0.61 0.753 8.86 0.0008 1.32 0.0066 10.60
1 13.1–15.0 2293 -0.069 -0.69 0.835 8.38 0.0008 0.78 0.0101 10.14
1 15.1–17.0 2693 -0.146 -1.30 0.937 8.31 -0.0004 -0.30 0.0132 8.97
1 17.1–19.0 2710 -0.064 -0.54 0.993 8.30 0.0006 0.31 0.0175 8.99
1 19.1–21.0 2629 0.016 0.11 1.157 7.99 0.0030 1.05 0.0235 8.16
1 21.1–23.0 1247 -0.060 -0.39 1.177 7.64 0.0000 0.01 0.0260 7.89
1 >23.1 562 0.010 0.06 1.125 6.83 -0.0001 -0.03 0.0262 7.13

<9.0 544 0.294 4.65 0.669 10.56 0.0032 15.26 0.0042 19.98
2 9.1–11.0 1145 0.202 2.75 0.692 9.43 0.0039 10.62 0.0059 15.97
2 11.1–13.0 1744 0.095 1.12 0.706 8.29 0.0038 6.07 0.0075 12.01
2 13.1–15.0 2293 0.063 0.63 0.755 7.58 0.0043 4.32 0.0108 10.80
2 15.1–17.0 2693 -0.025 -0.22 0.822 7.29 0.0033 2.22 0.0138 9.42
2 17.1–19.0 2710 0.072 0.60 0.861 7.20 0.0046 2.39 0.0182 9.35
2 19.1–21.0 2629 0.085 0.59 0.985 6.80 0.0045 1.58 0.0253 8.78
2 21.1–23.0 1247 0.034 0.22 0.949 6.16 0.0016 0.47 0.0267 8.09
2 >23.1 562 0.113 0.69 0.848 5.15 0.0026 0.71 0.0225 6.14

Percent E (RE) and percent SEE (RSEE) are based on the average observed values of the total height class.
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Although the first one appears to have a more complex nonlinear 
form, the two systems are about equally complex because both have 
six parameters. The system of Fang et al. (2000) has eight parameters 
and is more complex but did not perform better than our first one.

A better taper equation not only needs to predict stem form well 
but also provide accurate estimates of stem volume (Li and Weiskittel 
2010). Here, stem volume should include variable-top merchantable 
volume and total stem volume. More complicated taper equations 
might be more accurate for predicting stem taper, but it is difficult 
to derive closed-form compatible merchantable and total volume 
equations from them, as discussed in Appendix A. When taper equa-
tions do not have corresponding closed-form merchantable and total 
volume equations, their usefulness is limited in practice due to the 
difficulty of implementing them for volume estimation. This is one 
reason why most studies have compared the accuracy of stem taper 
equations in predicting taper only, rather than in total volume and 
especially in merchantable volume. For a given species, comparison 
of taper equation forms oftentimes found that some forms performed 
better in predicting diameters and some other forms were superior in 
estimating stem volume. It is reasonable to develop a taper equation 
that performs better for both taper and volume rather than to select 
one for diameter, another for volume. To achieve this goal, develop-
ing compatible taper and volume equations could be a good choice.

Previous studies either fitted taper equations to taper data only 
(Lynch et al. 2017), fitted merchantable volume equations to cumu-
lative volume only (Bailey 1994), or simultaneously fitted taper 
and merchantable volume equations to taper and cumulative vol-
ume data (Coble and Hilpp 2006, Özçelik and Cao 2017). A very 
limited number of studies (e.g., Fang and Bailey 1999, Fang et al. 
2000) have simultaneously fitted all component equations in the 
system. In our current study, we comprehensively compared three 
parameter estimation methods including simultaneous estimation 
approach, all of which ensure numeric consistency among compo-
nent equations in algebraically compatible systems. In addition to 
goodness-of-fit statistics, the system should be evaluated in predict-
ing upper diameter and merchantable volume across dbh classes, 
total height classes, and at relative heights from ground to top.

Compatible taper and volume systems offer many benefits such 
as additivity and flexibility over traditional taper equations (Fang 
et al. 2000, Li and Weiskittel 2010). However, in the current study, 
we demonstrate that keeping taper equation and merchantable and 
total volume equations algebraically compatible does not guar-
antee accurate estimates of all components in the system (taper, 
merchantable, and total volumes). The performance of a given 
algebraically compatible system could be changed by parameter 
estimation methods, even though these methods ensure numeric 
consistency among component equations in that system.

Conclusions
The meaning of compatibility of taper and volume equation sys-

tems is being extended. A completely compatible system of taper, total, 
and merchantable volume equations should be algebraically compat-
ible and numerically consistent among all component equations. To 
achieve the algebraic compatibility of a system either derived from a 
taper equation or from a merchantable volume equation, there exists 
a corresponding volume ratio function R that should satisfy all four 
conditions (see Appendix A). In addition, the taper function should 
be capable of being integrated over 0 ≤ ≤h H . At minimum, all 

the component equations should have a closed form. To ensure 
numeric consistency in an algebraically compatible taper and volume 
equation system, parameters in that system could be estimated by 
FM-1, FM-2, or FM-3, depending on the available data. The per-
formance of taper and volume equation systems need to be evaluated 
with taper, merchantable volume, and total volume predictions. Our 
results demonstrated that FM-3 provides the best prediction for both 
merchantable and total volumes as well as a competitive taper predic-
tion, while FM-1 provides the worst prediction for merchantable and 
total volumes but does not guarantee the best prediction for taper. 
Therefore, FM-3 is preferable to the other two methods and FM-1 is 
not recommended if all data of taper, cumulative volume, and total 
volume are available. The first system derived from a newly published 
merchantable volume equation (Zhao and Kane 2017) can be com-
petitive with the second system derived from the well-known Max 
and Burkhart (1976) Q-Q-Q taper equation for upper-stem diam-
eter prediction but outperformed the Max-Burkhart derived system 
in merchantable and total volume predictions.

Appendix A
For any type of merchantable volume equation either to an upper 

diameter limit (d) or to an upper stem height limit (h), theoretically 
there is a corresponding, uniquely defined compatible taper equa-
tion. This compatible taper equation may or may not have a closed 
form, depending on the function form of d or h associated with the 
merchantable equation.

Basically, merchantable volume equations could be grouped 
into three classes. The first one includes V V Vm T top= −  (Vtop : top 
volume of tree stem above a diameter d at a distance from the top 
of the stem) and V V Rm T= , in which Vtop  or R is a function of 
upper-stem diameter d. This class of merchantable volume equations 
has been intensively developed and used to derive compatible taper 
equations. For merchantable volume equations with an exponential 
function of d or exponential ratio form of Rd  (e.g., Van Deusen 
et al. 1981, Tasissa et al. 1997), the corresponding compatible taper 
equations either do not have a closed form or are involved with a 
complicated Incomplete Gamma function (Jordan et al. 2005). For 
the merchantable volume equation with power functions of d, how-
ever, a closed form of compatible taper equation can be derived, as 
shown below. The second class is referred to as upper stem height-
based merchantable volume equations, in which Vtop  or R is a func-
tion of upper stem height h, that is, V htop ( )  or Rh . Differentiating 
V htop ( )  or Rh  with respect to h can quickly result in a closed form 
of compatible taper equations (Lynch et al. 2017, Zhao and Kane 
2017). In the third class of merchantable volume equations, Vtop  or 
R are functions of both d and h. A closed-form compatible taper 
equation could be derived from this class of merchantable volume 
equation with power functions of both d and h (Bailey 1994).

In the first class of the merchantable volume equations, there are 
two types of Vm  equations associated with power functions of d, 
from which closed-form compatible taper functions can be derived. 
One type used by Honer (1964), Burkhart (1977), and Cao and 
Burkhart (1980) is

		  V V b d Dm T
b b= −[ ].1 1

2 3

		      (A.1)
Compatible taper functions to merchantable volume equations of 
this type were developed by Clutter (1980). Equation (A.1) could 
be further extended to a general form as
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		  V V b d D Hm T
b b b= −[ ].1 1

2 3 4  		     (A.2)

Another type of variable top-diameter merchantable volume equa-
tions is defined as total volume minus top volume. The general 
form is

	 V V V a D H a d D Hm T top
a a a a a= − = −0 3

1 2 4 5 6 .    	     (A.3)

A.3 and its compatible taper equations have been used by Pienaar 
et al. (1985). A.3 can be rewritten as the same form as A.2

V a D H b d D H V b d D H
b a

m
a a b b b

T
b b b= − = −

=
0 1 1

1 3

1 2 2 3 4 2 3 41 1( ) ( )
( /       aa b a b a a b a a0 2 4 3 5 1 4 6 2, , , ).   = = − = −          (A.4)

Therefore, compatible taper equations for both types of merchant-
able volume equations (A.2 and A.3) can be derived in the same way.

Let Rd denote the volume ratio for Vm prediction to any upper 
diameter limit and Rh denote the volume ratio for Vm prediction to 
any upper height limit. A.2 – A.4 can be written as V V Rm T d= ,  
where R b d D Hd

b b b= −1 1
2 3 4 . By the definition of the taper func-

tion, it should be noted that d d h f h2 2= =( ) ( ) . Then,

R b d D H b f h D H Rd
b b b

b
b b

h= − = − =1 11 1
22 3 4

2

3 4[ ( )] .       (A.5)

Thus, A.2 can be rewritten as V V R V Rm T d T h= = . It is because of 
the possibility of deriving compatible Rh  from Rd  (see A.5) or 
deriving compatible Rd  from Rh  (Reed and Green 1984) that the 
methodology for deriving compatible taper equations from a vol-
ume ratio Rd  or Rh  can be unified by taking the derivative of mer-
chantable volume with respect to upper height limit h.
That is, either from variable top-diameter merchantable volume 
equations or from variable top-height merchantable volume equa-
tions, the same approach could be followed to derive compatible 
taper equations:

		  V R k d h hT h

h
= ∂∫ 2

0
( ) , 		        (A.6)

or

		  V R k f h hT d

h
= ∂∫ ( ) .

0
		        (A.7)

where k = π / 40 000 for metric units or k = π / 576  for English 
measurement units. Differentiating both sides of A.6 with respect 
to h yields

			   V
R
h

k d hT
h∂

∂
= × 2 ( ).  	           (A.8)

Solving for d h( ) yields a compatible taper equation:

		  d h
V
k

R
h

T h( ) .=
∂
∂  		            (A.9)

Zhao and Kane (2017) proposed 11 height-based volume ratio 
functions. All these ratio functions are differentiable with respect to 
h, and the corresponding taper functions are given in Lynch et al. 
(2017). 

Differentiating both sides of A.7 with respect to h leads to

			   V
R
h

k f hT
d∂

∂
= × ( ).  	         (A.10)

According to A.5, we can get

	

∂
∂

= − 



 [ ] ∂

∂
−R

h
b D H

b
f h

f h
h

d b b
b

1
2 2

1
3 4

2

2
( )

( )
.  

  	       (A.11)

Then, substituting for ∂ ∂R hd /  from A.11 into A.10 gives

	
− 



 [ ] ∂

∂
= ×−b

b
V D H f h

f h
h

k f hT
b b

b

1
2 2

1

2
3 4

2

( )
( )

( ).  

or, following some rearrangement,

	
− ∂ = [ ] ∂− − − − −kb b V D H h f h f hT

b b
b

1
1

2
1 2

22 3 4
2

( ) ( ) ( ).  

     
(A.12)

A.12 is a separable differential equation involving the variables h 
and f h( ) . Integration of A.12 leads to

− = −( ) [ ] +− − − − − −kb b V D H h f h CT
b b b

b

1
1

2
1

2

1
2

12 13 4 2
2

( / ) ( ) .        
(A.13)

When h H f H= =, ( ) 0  so that C kb b V D HT
b b= − − − − −

1
1

2
1 12 3 4( / ) . 

Making use of this result, the fact that d h f h( ) ( )= , and some 
algebraic rearrangement gives

	
d h kb V D H H hb

b T
b b b( ) ( ) .= ( ) −





− − − − − −
1

1 2 1
1

22

2

3 4 2

        
(A.14)

For the special case of b4 0=  in merchantable volume equation 
(A.1), the compatible taper equation as shown by Clutter (1980) is

	
d h kb V D H hb

b T
b b( ) ( ) .= ( ) −





− − − − −
1

1 2 1
1

22

2

3 2

               
(A.15)

For the merchantable volume equation (A.3) in which 
b a a b a b a a1 3 0 2 4 3 5 1= = = −/ , ,  , b a a4 6 2= − , and 
V a D HT

a a= 0
1 2 , the compatible taper equation is

d h k V D H H ha
a

a
a T

a a a a a( ) ( ) .= ( )( ) −





− − − − −0

3

4

4

1 5 2 6 42 1
1

2
         (A.16)

or,

	
d h k D H H ha

a a
a a a( ) ( ) .= ( ) −





− − − −4

3 4

5 6 42
1

2

                  
(A.17)

Substituting for f h( ) from A.14 into A.5 with f h d h( ) ( )= 2
,  

α = −b b2 2 2/ ( ) , and making some algebraic rearrangement 
leads to

	

R b d h D H

b D H
k
V

H h

h
b b b

b b

T

= −

= − ( ) 



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−( )−

1

1

1

1

1

2 3 4

3 4

[ ( )]

.   
α

α
α

α               (A.18)

Recall V a D HT
a a= 0

1 2 , and p h H= / . Rewriting A.18 as

R b k a b D H pp
b a b b a b= − ( ) −( )− − + + − −1 11 0 1

13 1 3 4 2 4α α α α αα ( ) ( ) .    (A.19)
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Substituting 
′ = ′ = − + ′ = + − −−b b k a b b b a b b b a b0 1 0 1 1 3 1 3 2 4 2 41α αα α α( ) , ( ), ( )  and 

into A.19 gives

		  R b D H pp
b b= − ′ −( )′ ′1 10
1 2

α .  	         (A.20)
In summary, A.1 and A.3 are based on upper-diameter, that is, Rd . 
Their compatible upper height-based volume ratio function Rh  has 
the same form as A.18 or Rp  as the form as A. 20.

Let β = ′ ′ ′b D Hb b
0

1 2 , then A.20 becomes

		  R pp = − −( )1 1β α . 		        (A.21)

An upper height-based merchantable volume equation correspond-
ing to A.20 is written as

	 V a D H c D H
h
Hh

a a c c= − −



 0 0

1 2 1 2 1
α

, 	        (A.22)

where c a b c a b0 0 0 1 1 1= ⋅ ′ = ⋅ ′,  , and c a b2 2 2= ⋅ ′ . Total volume 
included in A. 22 is

			   V a D HT
a a= 0

1 2 .  	  	       (A.23)

Differentiating the volume ratio Rp  in A.20 or merchantable vol-
ume Vh in A.22 with respect to h yields the following compatible 
taper equation:

	  
 d h

k
c D H

h
H

c c( ) .= −





−
−α α

0
1

1
1 2 1

 	        
(A.24)

In fact, the equivalence of A.24 and A.17 can be demonstrated 
algebraically with a re-parameterization. Integrating k d h⋅ 2 ( )  
in A.  24 from ground to total height results in tree total vol-
umeV c D HT

c c= 0
1 2  rather than the total volume in A.23. Thus, in 

taper and volume equation system constituted of A.22, A.23, and 
A.24, a compatible taper equation A.24 can be derived from A.22, 
but A.22 cannot be obtained by algebraically rearranging parameters 
of A.24 (integrating the taper function). Therefore, the taper and 
volume equations in that system are not algebraically compatible.

When β = 1 , A.21 becomes R pp = − −1 1( ) .α  This ratio form 
has been used in earlier studies (Van Deusen 1982, Reed and Green 
1984). The corresponding merchantable volume can be written as

 		
V c D H

h
Hh

c c= − −
















 0

1 2 1 1
α

.  	        (A.25)

Here, the total volume equation is

			   V c D HT
c c= 0
1 2 .  		         (A.26)

The compatible taper equation derived from A.25 has the same 
form as A.24. Now, A.24, A.25, and A.26 comprise an algebraically 
compatible taper and volume equation system.

The upper stem-diameter-based merchantable volume equa-
tions (A.1 – A.3) and the upper stem-height-based merchantable 
volume equations (A.22 and A.25) implicitly define the same for-
mula of compatible taper equation (A.24). This suggests that any 

merchantable volume equation implicitly defines a unique taper 
function (Clutter 1980), but one taper function may be associ-
ated with more than one merchantable volume equations. In other 
words, the taper function derived from volume ratio equations 
(Rd, Rh, or Rp ) does not guarantee the algebraic compatibility of 
the resultant taper and volume equation system. Zhao and Kane 
(2017) suggested that a volume ratio function Rp  should satisfy 
four conditions: (I) R pp = =0 0 if ,  (II) R pp = =1 1 if , (III) 
∂ ∂ ≥ ≤ ≤R p pp / ,0 0 1 for  and (IV) ∂ ∂ ≤ ≤ ≤2 2 0 0 1R p pp /  for .  
Conditions I  and II are obvious, the proof of conditions III and 
IV is given in the appendix A of Lynch et al. (2017). These con-
ditions could be extended for a general volume ratio function 
R, regardless of Rh  or Rd , with respect to h: (I) R h= =0 0 if ,  
(II) R h H= =1 if ,  (III) ∂ ∂ ≥ ≤ ≤R h h H/ ,0 0 for  and (IV) 
∂ ∂ ≤ ≤ ≤2 2 0 0R h h H/  for . The Rd  and Rh  are linked through a 
compatible taper function d h f h2 ( ) ( )= . To achieve the algebraic 
compatibility in a taper and volume system, the volume ratio func-
tion in that system or implied in that system should satisfy all these 
four conditions. Because the ratio function A.20 does not meet 
condition I, the resultant system composed of A.22, A.23, and A.24 
is not algebraically compatible. When β = 1 in A.21, the volume 
ratio satisfies all the four conditions, and then the resultant system 
composed of A. 24, A.25, and A. 26 has algebraic compatibility.

It should be emphasized that deriving Rh from Rd or deriving 
Rd from Rh could be possible only through a compatible equation 
d h f h2 ( ) ( )= . Especially when h f d= −1 2( ) , an expression to pre-
dict h, could be algebraically derived from the taper equation, Rd  
equation could be derived from Rh  (Byrne and Reed 1986), and 
all the derived taper equation, Rd , and Rh are compatible to the 
merchantable volume equation. A disadvantage of deriving taper 
functions by equating fits of an arbitrary Rd  equation and another 
arbitrary Rh  equation (e.g., Amateis and Burkhart 1987, Tasissa 
et al. 1997, Bullock and Burkhart 2003) is that the resultant taper 
functions cannot be guaranteed to be compatible. That is, integra-
tion of such taper functions will not necessarily be equal to the mer-
chantable volume functions based on ratio equations in the system.

Appendix B
For a given system, three fitting methods (FM-1, FM-2, and FM-3) 

were ranked based on the absolute value of average errors (E) and stan-
dard errors of estimates (SEE) of all three attributes: taper, merchant-
able volume, and total volume in Table 4. The attributes were equally 
weighted. Rank one was used for the best method and three for the poor-
est. Table B.1 shows the sum of the ranks of the fitting methods for each 
system.

Table B.1. Sum of the ranks, and ranks based on the rank sum (in 
brackets) of the three fitting methods by the systems.

System Description Estimation methods

FM-1 FM-2 FM-3

1 Overall E for taper, merchantable, 
and total volume

8 (3) 5 (2) 3 (1)

Overall SEE for taper, 
merchantable, and total volume

7 (3) 4 (2) 3 (1)

Total 15 (6) 9 (2) 6 (2)
2 Overall E for taper, merchantable, 

and total volume
5 (1) 5 (1) 5 (1)

Overall SEE for taper, 
merchantable, and total volume

5 (3) 4 (2) 3 (1)

Total 10 (4) 9 (3) 8 (2)
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For a given fitting method such as FM-3, the two systems were 
ranked based on the performance of estimation of diameters and 
volumes for different tree sizes and for different portions of the 
stem, using the average errors and standard errors of estimates 
in Tables 5 to 7. Each system was assigned a rank separately for 
every DBH class, for every total height class, and for every rela-
tive height levels for diameters and volumes. These ranks were 
summed for the average errors and standard errors of estimates. 
Table B.2 shows the sum of the ranks of the two systems associ-
ated with FM-3.

Literature Cited
Amateis, R.L., and H.E.  Burkhart. 1987. Cubic-foot volume equa-

tions for loblolly pine trees in cutover, site-prepared plantations. South. 
J. Appl. For. 11:190–192. doi:10.1093/sjaf/11.41190.

Bailey, R.L. 1994. A compatible volume-taper model based on the 
Schumacher and Hall generalized constant form factor volume equa-
tion. For. Sci. 40(2):303–313. doi:10.1039/forestscience/40.2.303.

Bailey, R.L. 1995. Upper-stem volumes from stem-analysis data: an over-
lapping bolts method. Can. J.  For. Res. 25:170–173. doi:10.1139/
x95-020.

Beher, C.E. 1923. Preliminary notes on studies of tree form. J. For. 
21(5):507–511. doi:10.1093/jof/21.5.507.

Burkhart, H.E. 1977. Cubic foot volume of loblolly pine to any merchant-
able top limit. South. J. Appl. For. 1(2):7–9. doi:10.1039/sjaf/1.2.7.

Bullock, B.P., and H.E.  Burkhart. 2003. Equations for predicting 
green weight of loblolly pine trees in the south. South. J.  Appl. For. 
27(3):153–159. doi:10.1093/sjaf/27.3.153.

Byrne, J.C., and D.D. Reed. 1986. Complex compatible taper and vol-
ume estimation systems for red and loblolly pine. For. Sci. 32(2):423–
443. doi:10.1093/forestscience/32.2.423.

Cao, Q.V., and H.E. Burkhart. 1980. Cubic-foot volume of loblolly pine 
to any height limit. South. J.  Appl. For. 4(4):166–168. doi:10.1093/
sjaf/4.4.166.

Clark, J.F. 1902. Volume tables and the bases on which they may be built. 
J. For. 1(1):6–11. doi:10.1093/jof/1.1.6.

Clutter, J.L. 1980. Development of taper functions from variable-top 
merchantable volume equations. For. Sci. 26(1):117–120. doi:10.1039/
forestscience/26.1.117.

Coble, D.W., and K.  Hilpp. 2006. Compatible cubic-foot stem vol-
ume and upper-stem diameter equations for semi-intensive plantation 
grown loblolly pine trees in East Texas. South. J. Appl. For. 30(3):132–
141. doi:10.1093/sjaf/30.3.132.

Demaerschalk, J.P. 1971. Taper equations can be converted to vol-
ume equations and point sampling factors. For. Chron. 47:352–354. 
doi:10.5558/tfc47352-6.

Demaerschalk, J.P. 1972. Converting volume equations to com-
patible taper equations. For. Sci. 18:241–245. doi:10.1093/
forestscience/18.3.241.

Demaerschalk, J.P. 1973. Integrated systems for the estimation of tree 
taper and volume. Can. J. For. Res. 3:90–94. doi:10.1139/x73-013.

Fang, Z., and R.L.  Bailey. 1999. Compatible volume and taper mod-
els with coefficients for tropical species on Hainan island in southern 
China. For. Sci. 45:85–100. doi:10.1093/forestscience/45.1.85.

Fang, Z., B.E.  Border, and R.L.  Bailey. 2000. Compatible volume-
taper models for loblolly and slash pine based on a system with 
segmented-stem form factors. For. Sci. 46(1):1–12. doi:10.1093/
forestscience/46.1.1.

Goulding, C.J., and J.C. Murray. 1976. Polynomial taper equations that 
are compatible with tree volume equations. N. Z. J. For. Sci. 5:313–322.

Gregoire, T.G., and O.  Schabenberger. 1996. A non-linear mixed-
effects model to predict cumulative bole volume of standing trees. J. 
Appl. Stat. 23:257–271. doi:10.1080/02664769624233.

Honer, T.G. 1964. The use of height and squared diameter ratios for the 
estimation of cubic foot volume. For. Chron. 40:324–331. doi:10.5558/
tfc40324-3.

Jordan, L., K.  Berenhaut, R.  Souter, and R.F.  Daniels. 2005. 
Parsimonious and completely compatible taper, total, and mer-
chantable volume models. For. Sci. 51(6):578–584. doi:10.1039/
forestscience/51.6.578.

Kozak, A. 2004. My last words on taper equations. For. Chron. 80:507–
514. doi:10.5558/tfc80507-4.

Kozak, A., and J.H.G. Smith. 1993. Standards for evaluating taper esti-
mating systems. For. Chron. 69(4):438–444. doi:10.5558/tfc69438-4.

Li, R.X., and A.R. Weiskittel. 2010. Comparison of model forms for 
estimating stem taper and volume in the primary conifer species of the 
North American Acadian Region. Ann. For. Sci. 67:302. doi:10.1051/
forest/2009109.

Lynch, T.B., D. Zhao, W. Harges, and J.P. McTague. 2017. Deriving 
compatible taper functions from volume ratio equations based on 
upper-stem height. Can. J.  For. Res. 47:1424–1431. doi:10.1139/
cjfr-2017-0108.

Max, T.A., and H.E.  Burkhart. 1976. Segmented polynomial regres-
sion applied to taper equation. For. Sci. 22:283–289. doi:10.1039/
forestscience/22.3.283.

Munro, D.D., and J.P.  Demaerschalk. 1974. Taper-based versus vol-
ume-based compatible estimating systems. For. Chron. 50(5):197–199. 
doi:10.5558/tfc50197-5.

Özçelik, R., and Q.V. Cao. 2017. Evaluation of fitting and adjustment 
methods for taper and volume prediction of black pine in Turkey. For. 
Sci. 63(4):349–355. doi:10.5849/fosci.14-212.

Parresol, B.R. 2001. Additivity of nonlinear biomass equations. Can. 
J. For. Res. 31:865–878. doi:10.1139/x00-202.

Pienaar, L.V., T. Burgan, and J.W. Rheney. 1987. Stem volume, taper 
and weight equations for site-prepared loblolly pine plantations. School 
of Forest Resources, PMRC Tech. Rep. 1987-1, University of Georgia, 
Athens, GA. 13 p.

Pienaar, L.V., B.D. Shiver, and J.W. Rheney. 1985. Revised stem volume 
and weight equations for site-prepared slash pine plantations. School of 
Forest Resources, PMRC Tech. Rep.  1985-5, University of Georgia, 
Athens, GA. 21 p.

Reed, D.D., and E.J. Green. 1984. Compatible stem taper and volume ratio 
equations. For. Sci. 30:977–990. doi:10.1039/forestscience/30.4.977.

SAS Institute, Inc. 2011. SAS/ETS® 9.3 user’s guide, SAS Institute, Inc., 
Cary, NC. 3273 p.

Schumacher, F.X., and F.S. Hall. 1933. Logarithmic expression of tim-
ber-tree volume. J. Agric. Res. 47:719–734.

Spurr, S.H. 1952. Forest inventory. John Wiley and Sons, New York. 472 p.
Tasissa, G., H.E.  Burkhart, and R.L.  Amateis. 1997. Volume and 

taper equations for thinned and unthinned loblolly pine trees in 

Table B.2. Sum of the ranks, and ranks based on the rank sum (in 
brackets) of the two systems associated with FM-3.

Description System 1 System 2

E for diameter by DBH classes 13 (1) 23 (2)
SEE for diameter by DBH classes 21 (2) 15 (1)
E for volume by DBH classes 15 (1) 21 (2)
SEE for volume by DBH classes 15 (1) 20 (2)
E for diameter by total height classes 12 (1) 15 (2)
SEE for diameter by total height classes 14 (2) 11 (1)
E for volume by total height classes 9 (1) 18 (2)
SEE for volume by total height classes 10 (1) 17 (2)
E for diameter from ground to top 23 (2) 13 (1)
SEE for diameter from ground to top 21 (2) 15 (1)
E for volume from ground to top 14(1) 25 (2)
SEE for volume from ground to top 14 (1) 24 (2)
Total 181 (16) 217 (20)

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/65/1/1/5103506 by U

 S D
ept of Agriculture user on 02 July 2019



12  Forest Science  •  February 2019 Forest Science  •  February 2019  13

cutover, site-prepared plantations. South. J. Appl. For. 21(3):146–152. 
doi:10.1093/sjaf/21.3.146.

Van Deusen, P.C. 1988. Simultaneous estimation with a squared error 
loss function. Can. J.  For. Res. 18(8):1093–1096. doi:10.1139/
x88-167.

Van Deusen, P.C., T.G.  Matney, and A.D.  Sullivan 1982.  
A compatible system for predicting the volume and diameter of sweet-
gum trees to any height. South. J. Appl. For. 3:159–163. doi:10.1039/
sjaf/6.3.159.

Van Deusen, P.C., A.D. Sullivan, and T.G. Matney 1981. A prediction 
system for cubic foot volume of loblolly pine applicable through much 
of its range. South. J. Appl. For. 5(4):186–189. doi:10.1093/sjaf/5.4.186.

Zhao, D., and M. Kane. 2017. New variable-top merchantable volume 
and weight equations derived directly from cumulative relative profiles 
for loblolly pine. For. Sci. 63(3):261–269. doi:10.5849/FS.2016-076.

Zhao, D., M. Kane, D. Markewitz, R. Teskey, and M. Clutter. 2015. 
Additive tree biomass equations for midrotation loblolly pine planta-
tions. For. Sci. 61(4):613–623. doi:10.5849/forsci.14-193.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestscience/article-abstract/65/1/1/5103506 by U

 S D
ept of Agriculture user on 02 July 2019


